Chemical Studies of Minerals Containing Rarer Elements from the Far East District. LXV.¹⁾ Pollucite from Nagatare, Fukuoka Prefecture, Japan

Kin-ichi Sakurai, Akira Kato, Noriyuki Kuwano,* and Kozo Nagashima**

Department of Geology, National Science Museum, Ueno Park, Tokyo
*Institute of Metallurgy, Faculty of Technology, Kyushu University, Fukuoka
**Department of Chemistry, Tokyo Kyoiku University, Otsuka, Tokyo
(Received September 29, 1971)

The chemical analysis of pollucite found in a granite pegmatite at Nagatare, Fukuoka Prefecture, gave SiO₂ 46.03, Al₂O₃ 17.76, Fe₂O₃ 0.02, MnO 0.01, CaO 0.03, Li₂O 0.16, Na₂O 2.08, K₂O 1.81, Rb₂O 0.61, Cs₂O 28.88, and H₂O 2.74; total 100.13%; recalculated as (Cs,Rb)_{0.573}(Na,K,Li,Mn,Ca)_{0.316}(Al,Fe)_{0.943}Si_{2.071}O₆·0.411 H₂O as O=6, thus satisfying the crystallochemical formula advocated by Beger. X-ray single crystal and powder studies have shown it to be cubic, the space group is Ia3d; a_0 =13.674±0.005 Å. It is optically isotropic or very faintly birefringent, with n=1.520±0.002.

Granite pegmatites exposed at Nagatare, Fukuoka Prefecture, include some rare alkali-bearing minerals, such as lepidolite,²⁾ petalite,³⁾ and amblygonite-montebrasite-series minearals,⁴⁾ all except the first one being unique occurrences in Japan.

TABLE 1. X-RAY POWDER DATA FOR POLLUCITE FROM

NAGATARE, FUKUOKA PREFECTURE									
1		2				,,,			
$\widetilde{d(\mathrm{\AA})}$	$\overline{}_I$	$d(ilde{ ext{A}})$	I	Q_{obs}	$\overline{Q_{calc}}$	hkl			
5.55	20	5.56	2	0.032	0.032	211			
4.818	20	4.83	2	0.043	0.043	222			
3.652	80	3.65	30	0.075	0.075	321			
3.421	100	3.416	100	0.0857	0.0856	400			
		3.225	2	0.0962	0.0963	330,411			
3.048	10	3.058	3	0.1070	0.1070	420			
2.907	100	2.913	45	0.1178	0.1177	332			
		2.791	1	0.1284	0.1284	422			
2.674	20	2.682	7	0.1390	0.1391	510,431			
2.492	20	2.497	4	0.1604	0.1604	521			
2.406	80	2.416	24	0.1713	0.1711	440			
2.211	60	2.218	17	0.2033	0.2032	611			
		2.162	1	0.2139	0.2139	620			
2.007	40	2.015	6	0.2462	0.2460	631			
1.970	40	1.973	4	0.2569	0.2567	444			
1.886	20	1.897	3	0.2780	0.2781	640			
1.855	80	1.860	18	0.2890	0.2888	633			
		1.827	1	0.2995	0.2995	642			
1.731	80	1.736	22	0.3318	0.3316	651			
1.705	60	1.709	10	0.3424	0.3423	800			
1.679	20	1.683	3	0.3531	0.3530	811			
		1.658	2	0.3640	0.3639	644			
1.630	20	1.634	3	0.3744	0.3744	653			
		1.589	3	0.3957	0.3958	750			
		1.548	4	0.4173	0.4172	752			
		1.529	7	0.4280	0.4279	840			

Pollucite. Buckfield, Maine, U.S.A. A.S.T.M. Card No. 15—317. Cu/Ni radiation. Camera method.

A white mass with a rugged, weathered surface collected by the third author from the dump derived from one of the pegmatites turned out to be the first pollucite in Japan, as has previously been reported.⁵⁾ The present paper will report the results of its X-ray, chemical, and optical studies.

Description of the Studied Specimen

The analyzed specimen is a part of a white mass more than 10 cm across and 500 g in weight. It is white in color and semitransluscent, with a vitreous luster. It has no cleavage, and the hardness is $5\frac{1}{2}-6$ by Mohs' scale.

The associated minerals found in the mass include pale blue albite, and light and deep purple-colored lepidolites and petalite. Besides them, there are minute soft, white veinlets composed of earthy hydromica (?) with quartz. Under a microscope, pollucite is colorless and isotropic between crossed Nicols, except for a few grains which have a faint birefringence. The refractive index, as measured by the immersion method, is 1.520 ± 0.002 . The birefringence could not be masured by that method, but it is less than 0.002.

Table 2. Chemical analysis of pollucite from nagatare, fukuoka Prefecture

	wt%	Molecular quotient	Metal number	Oxygen number	Metal number as O=6
SiO_2	46.03	0.7661	0.7661	1.5322	2.0708
Al_2O_3	17.76	0.1742	0.3483	0.5226	0.9417
$\mathrm{Fe_2O_3}$	0.02	0.0001	0.0002	0.0003	0.0008
MnO	0.01	0.0001	0.0001	0.0001	0.0003
CaO	0.03	0.0005	0.0005	0.0005	0.0014
$\mathrm{Li_2O}$	0.16	0.0054	0.0108	0.0054	0.0292
Na_2O	2.08	0.0336	0.0672	0.0336	0.1816
K_2O	1.81	0.0192	0.0384	0.0192	0.1038
Rb_2O	0.61	0.0033	0.0066	0.0033	0.0178
Cs_2O	28.88	0.1025	0.2050	0.1025	0.5541
H_2O	2.74	0.1521			0.4111
Total	100.13				

Analyst: K. Nagashima

Pollucite. Nagatare, Fukuoka Prefecture. Cu/Ni radiation. Diffractometer method.

¹⁾ Part LXIV: K. Nagashima, K. Nakao, H. Wakita, and A. Kato, This Bulletin, 44, 867 (1971).

²⁾ H. Shibata, J. Geological Soc. Japan. 41, 582 (1936).

³⁾ Y. Okamoto, Kobutsu to Chishitsu, 3, 1 (1950).

⁴⁾ J. Ito, H. Minato, and Y. Okamoto, J. Mineralogical. Soc. Japan, 2, 263 (1955).

⁵⁾ N. Kuwano, Chigaku Kenkyu, 21, 416 (1970).

X-ray Studies

We used the X-ray single-crystal and powder methods to check the space group and the unit-cell constant. In its precession photographs of zero, first, and second layers, there was no diffraction spectrum violating the extinction rule of Ia3d. The X-ray powder data obtained by the diffractometer method are given in Table 1. The unit-cell constant calculated from them is 13.674 ± 0.005 Å, well coincident with the known value. 6

Chemical Analysis

The chemical analysis was carried out adopting the following procedures: Cs₂O, Rb₂O, and Li₂O——

atomic absorption analysis; Na₂O, K₂O—flame photometry; SiO₂, Al₂O₃, CaO, H₂O—gravimetry; Fe₂O₃, MnO—spectrophotometry. The results are shown in Table 2. The empirical formula based on O=6 is $(Cs_{0.554}Rb_{0.018})_{0.572}(Na_{0.182}K_{0.104}Li_{0.029}Mn_{0.003}-Ca_{0.001})_{0.316}(Al_{0.942}Fe_{0.001})_{0.943}Si_{2.071}O_6 \cdot 0.411 H₂O, well satisfying the ideal formula. The adoption of the crystallochemical formula proposed by Beger, O <math>Cs_xNa_yAl_{x+y}-Si_{48-x+y}O_{96} \cdot (16-x)H_2O$, where $2y \ge 16-x \ge y$, gives the following results:

empirical formula: (Cs, Rb) $_{9.150}$ (Na, K, Li, Mn, Ca) $_{5.061}$ Al $_{15.080}$ Si $_{33.133}$ O $_{96}$ ·6.578 H $_2$ O

crystallochemical formula: (Cs, Rb)_{9·150}(Na, K, Li, Mn, Ca)_{5·061}Al_{14·211}Si_{33·789}O₉₆·6.850 H₂O

There is a minor excess of tetrahedrally-co-ordinated

ions and a deficiency of water, both being within the limits of analytical error.

⁶⁾ R. M. Berger, Z. Krist., 192, 280 (1969).